Large Scale Spectral Clustering with Landmark-Based Representation

نویسندگان

  • Xinlei Chen
  • Deng Cai
چکیده

Spectral clustering is one of the most popular clustering approaches. Despite its good performance, it is limited in its applicability to large-scale problems due to its high computational complexity. Recently, many approaches have been proposed to accelerate the spectral clustering. Unfortunately, these methods usually sacrifice quite a lot information of the original data, thus result in a degradation of performance. In this paper, we propose a novel approach, called Landmark-based Spectral Clustering (LSC), for large scale clustering problems. Specifically, we select p ( n) representative data points as the landmarks and represent the original data points as the linear combinations of these landmarks. The spectral embedding of the data can then be efficiently computed with the landmark-based representation. The proposed algorithm scales linearly with the problem size. Extensive experiments show the effectiveness and efficiency of our approach comparing to the state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guided Co-training for Large-Scale Multi-View Spectral Clustering

In many real-world applications, we have access to multiple views of the data, each of which characterizes the data from a distinct aspect. Several previous algorithms have demonstrated that one can achieve better clustering accuracy by integrating information from all views appropriately than using only an individual view. Owing to the effectiveness of spectral clustering, many multi-view clus...

متن کامل

Hybrid Document Indexing with Spectral Embedding

Document representation has a large impact on the performance of document retrieval and clustering algorithms. We propose a hybrid document indexing scheme that combines the traditional bagof-words representation with spectral embedding. This method accounts for the specifics of the document collection and also uses semantic similarity information based on a large scale statistical analysis. Cl...

متن کامل

Fast Subspace Clustering Based on the Kronecker Product

Subspace clustering is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller than the ambient dimension. Spectral clustering, as one of the main approaches to subspace clustering, often takes on a sparse representation or a low-rank representation to learn a block diagonal self-representation matrix for subspace gener...

متن کامل

An Evaluation of Two Automatic Landmark Building Discovery Algorithms for City Reconstruction

An important part of large-scale city reconstruction systems is an image clustering algorithm that divides a set of images into groups that should cover only one building each. Those groups then serve as input for structure from motion systems. A variety of approaches for this mining step have been proposed recently, but there is a lack of comparative evaluations and realistic benchmarks. In th...

متن کامل

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011